metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊12D6, C6.892+ 1+4, (C2×D4)⋊40D6, (C22×C4)⋊31D6, (C22×C6)⋊13D4, C23⋊2D6⋊30C2, D6⋊C4⋊36C22, (C22×D4)⋊13S3, (C6×D4)⋊58C22, C23⋊5(C3⋊D4), C3⋊5(C23⋊3D4), C24⋊4S3⋊12C2, (C2×C6).299C24, (C23×C6)⋊14C22, C6.146(C22×D4), C23.14D6⋊41C2, C2.92(D4⋊6D6), (C2×C12).644C23, Dic3⋊C4⋊38C22, (S3×C23)⋊15C22, (C22×C12)⋊44C22, C6.D4⋊64C22, C23.23D6⋊29C2, C23.28D6⋊28C2, C23.216(C22×S3), (C22×C6).233C23, C22.312(S3×C23), (C22×S3).130C23, (C2×Dic3).154C23, (C22×Dic3)⋊34C22, (D4×C2×C6)⋊17C2, (C2×C6).582(C2×D4), (C22×C3⋊D4)⋊17C2, (C2×C3⋊D4)⋊48C22, C2.19(C22×C3⋊D4), C22.20(C2×C3⋊D4), (C2×C6.D4)⋊30C2, (C2×C4).238(C22×S3), SmallGroup(192,1363)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24⋊12D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=f2=1, ab=ba, ac=ca, faf=ad=da, ae=ea, bc=cb, ebe-1=bd=db, fbf=bcd, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 968 in 346 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C22≀C2, C4⋊D4, C22.D4, C22×D4, C22×D4, Dic3⋊C4, D6⋊C4, C6.D4, C22×Dic3, C22×Dic3, C2×C3⋊D4, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, S3×C23, C23×C6, C23⋊3D4, C23.28D6, C23.23D6, C23⋊2D6, C23.14D6, C2×C6.D4, C24⋊4S3, C22×C3⋊D4, D4×C2×C6, C24⋊12D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C24, C3⋊D4, C22×S3, C22×D4, 2+ 1+4, C2×C3⋊D4, S3×C23, C23⋊3D4, D4⋊6D6, C22×C3⋊D4, C24⋊12D6
(1 23)(2 24)(3 22)(4 17)(5 18)(6 16)(7 13)(8 14)(9 15)(10 21)(11 19)(12 20)(25 36)(26 31)(27 32)(28 33)(29 34)(30 35)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)
(1 36)(2 34)(3 32)(4 28)(5 26)(6 30)(7 43)(8 47)(9 45)(10 46)(11 44)(12 48)(13 37)(14 41)(15 39)(16 35)(17 33)(18 31)(19 38)(20 42)(21 40)(22 27)(23 25)(24 29)
(1 13)(2 14)(3 15)(4 10)(5 11)(6 12)(7 23)(8 24)(9 22)(16 20)(17 21)(18 19)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 38)(32 39)(33 40)(34 41)(35 42)(36 37)
(1 17)(2 18)(3 16)(4 23)(5 24)(6 22)(7 10)(8 11)(9 12)(13 21)(14 19)(15 20)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 16)(2 18)(3 17)(4 6)(7 9)(10 12)(13 20)(14 19)(15 21)(22 23)(25 48)(26 47)(27 46)(28 45)(29 44)(30 43)(31 38)(32 37)(33 42)(34 41)(35 40)(36 39)
G:=sub<Sym(48)| (1,23)(2,24)(3,22)(4,17)(5,18)(6,16)(7,13)(8,14)(9,15)(10,21)(11,19)(12,20)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,36)(2,34)(3,32)(4,28)(5,26)(6,30)(7,43)(8,47)(9,45)(10,46)(11,44)(12,48)(13,37)(14,41)(15,39)(16,35)(17,33)(18,31)(19,38)(20,42)(21,40)(22,27)(23,25)(24,29), (1,13)(2,14)(3,15)(4,10)(5,11)(6,12)(7,23)(8,24)(9,22)(16,20)(17,21)(18,19)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,17)(2,18)(3,16)(4,23)(5,24)(6,22)(7,10)(8,11)(9,12)(13,21)(14,19)(15,20)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,16)(2,18)(3,17)(4,6)(7,9)(10,12)(13,20)(14,19)(15,21)(22,23)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,38)(32,37)(33,42)(34,41)(35,40)(36,39)>;
G:=Group( (1,23)(2,24)(3,22)(4,17)(5,18)(6,16)(7,13)(8,14)(9,15)(10,21)(11,19)(12,20)(25,36)(26,31)(27,32)(28,33)(29,34)(30,35)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48), (1,36)(2,34)(3,32)(4,28)(5,26)(6,30)(7,43)(8,47)(9,45)(10,46)(11,44)(12,48)(13,37)(14,41)(15,39)(16,35)(17,33)(18,31)(19,38)(20,42)(21,40)(22,27)(23,25)(24,29), (1,13)(2,14)(3,15)(4,10)(5,11)(6,12)(7,23)(8,24)(9,22)(16,20)(17,21)(18,19)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,17)(2,18)(3,16)(4,23)(5,24)(6,22)(7,10)(8,11)(9,12)(13,21)(14,19)(15,20)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,16)(2,18)(3,17)(4,6)(7,9)(10,12)(13,20)(14,19)(15,21)(22,23)(25,48)(26,47)(27,46)(28,45)(29,44)(30,43)(31,38)(32,37)(33,42)(34,41)(35,40)(36,39) );
G=PermutationGroup([[(1,23),(2,24),(3,22),(4,17),(5,18),(6,16),(7,13),(8,14),(9,15),(10,21),(11,19),(12,20),(25,36),(26,31),(27,32),(28,33),(29,34),(30,35),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48)], [(1,36),(2,34),(3,32),(4,28),(5,26),(6,30),(7,43),(8,47),(9,45),(10,46),(11,44),(12,48),(13,37),(14,41),(15,39),(16,35),(17,33),(18,31),(19,38),(20,42),(21,40),(22,27),(23,25),(24,29)], [(1,13),(2,14),(3,15),(4,10),(5,11),(6,12),(7,23),(8,24),(9,22),(16,20),(17,21),(18,19),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,38),(32,39),(33,40),(34,41),(35,42),(36,37)], [(1,17),(2,18),(3,16),(4,23),(5,24),(6,22),(7,10),(8,11),(9,12),(13,21),(14,19),(15,20),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,16),(2,18),(3,17),(4,6),(7,9),(10,12),(13,20),(14,19),(15,21),(22,23),(25,48),(26,47),(27,46),(28,45),(29,44),(30,43),(31,38),(32,37),(33,42),(34,41),(35,40),(36,39)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 2L | 2M | 3 | 4A | 4B | 4C | ··· | 4H | 6A | ··· | 6G | 6H | ··· | 6O | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 12 | 12 | 2 | 4 | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | C3⋊D4 | 2+ 1+4 | D4⋊6D6 |
kernel | C24⋊12D6 | C23.28D6 | C23.23D6 | C23⋊2D6 | C23.14D6 | C2×C6.D4 | C24⋊4S3 | C22×C3⋊D4 | D4×C2×C6 | C22×D4 | C22×C6 | C22×C4 | C2×D4 | C24 | C23 | C6 | C2 |
# reps | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 1 | 1 | 1 | 4 | 1 | 4 | 2 | 8 | 2 | 4 |
Matrix representation of C24⋊12D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 11 | 0 |
0 | 0 | 0 | 1 | 0 | 11 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
2 | 4 | 0 | 0 | 0 | 0 |
9 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
12 | 12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 12 | 0 |
0 | 0 | 0 | 1 | 0 | 12 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,11,0,12,0,0,0,0,11,0,12],[2,9,0,0,0,0,4,11,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,0,12,0,0,0,0,0,0,12] >;
C24⋊12D6 in GAP, Magma, Sage, TeX
C_2^4\rtimes_{12}D_6
% in TeX
G:=Group("C2^4:12D6");
// GroupNames label
G:=SmallGroup(192,1363);
// by ID
G=gap.SmallGroup(192,1363);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,758,675,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=f^2=1,a*b=b*a,a*c=c*a,f*a*f=a*d=d*a,a*e=e*a,b*c=c*b,e*b*e^-1=b*d=d*b,f*b*f=b*c*d,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations